Геометрия
Страница 1 из 1
Геометрия
Геометрия — это раздел математики, изучающий геометрические фигуры и их свойства.
К основным понятиям геометрии относятся ТОЧКА, ПРЯМАЯ и ПЛОСКОСТЬ, они
ДАЮТСЯ БЕЗ ОПРЕДЕЛЕНИЯ, НО ОПРЕДЕЛЕНИЯ ДРУГИХ ГЕОМЕТРИЧЕСКИХ ФИГУР ДАЮТСЯ ЧЕРЕЗ ЭТИ ПОНЯТИЯ.
Прямая и плоскость безграничны, поэтому на чертеже изображают часть.
• Точки обозначаются прописными латинскими буквами: A, B, C, D,…
• Прямые обозначаются строчными латинскими буквами: a, b, c, d, … Или же прямую можно обозначать двумя точками, лежащими на ней.
• Отрезок обозначается заглавными латинскими буквами: AB, CD, …
Точка — это самая простая геометрическая фигура, которая является основой всех прочих построений (фигур) в любом изображении или чертеже.
Всякая более сложная геометрическая фигура — это множество точек, обладающих определенным свойством, характерным только для этой фигуры.
Прямую можно представить себе как бесчисленное множество точек, которые расположены на одной линии, не имеющей ни начала, ни конца. На листе бумаги мы видим только часть прямой линии, так как она бесконечна…
К основным понятиям геометрии относятся ТОЧКА, ПРЯМАЯ и ПЛОСКОСТЬ, они
ДАЮТСЯ БЕЗ ОПРЕДЕЛЕНИЯ, НО ОПРЕДЕЛЕНИЯ ДРУГИХ ГЕОМЕТРИЧЕСКИХ ФИГУР ДАЮТСЯ ЧЕРЕЗ ЭТИ ПОНЯТИЯ.
Прямая и плоскость безграничны, поэтому на чертеже изображают часть.
• Точки обозначаются прописными латинскими буквами: A, B, C, D,…
• Прямые обозначаются строчными латинскими буквами: a, b, c, d, … Или же прямую можно обозначать двумя точками, лежащими на ней.
• Отрезок обозначается заглавными латинскими буквами: AB, CD, …
Точка — это самая простая геометрическая фигура, которая является основой всех прочих построений (фигур) в любом изображении или чертеже.
Всякая более сложная геометрическая фигура — это множество точек, обладающих определенным свойством, характерным только для этой фигуры.
Прямую можно представить себе как бесчисленное множество точек, которые расположены на одной линии, не имеющей ни начала, ни конца. На листе бумаги мы видим только часть прямой линии, так как она бесконечна…
Понятие геометрической фигуры. Виды геометрических фигур.
Геометрическую фигуру определяют как любое множество точек.
Если все точки геометрической фигуры принадлежат одной плоскости она называется плоской. Например, отрезок, прямоугольник – это плоские фигуры. Существуют фигуры, не являющиеся плоскими. Это, например, куб, шар, пирамида.
Так как понятие геометрической фигуры определено через понятие множество, то можно говорить о том, что одна фигура включена в другую (или содержится в другой), можно рассматривать объединение, пересечение и разность фигур.
Точка – неопределяемое понятие. С точкой обычно знакомят, рисуя ее или прокалывая стержнем ручки в листочке бумаги. Считается, что точка не имеет ни длины, ни ширины, ни площади.
Линия – неопределяемое понятие. С линией знакомят, моделируя ее из шнура или рисуя на доске, на листе бумаги. Основное свойство прямой линии: прямая линия бесконечна. Кривые линии могут быть замкнутыми и незамкнутыми.
Луч – это часть прямой, ограниченная с одной стороны.
Отрезок – часть прямой, заключенная между двумя точками – концами отрезка.
Ломаная – линия из отрезков, соединенных последовательно под углом друг к другу. Звено ломаной – отрезок. Точки соединения звеньев называют вершинами ломаной.
Угол – это геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки. Лучи называются сторонами угла, а их общее начало – его вершиной. Угол обозначают по-разному: указывают либо его вершину, либо его стороны, либо три точки: вершину и две точки на сторонах угла.
Угол называется развернутым, если его стороны лежат на одной прямой. Угол, составляющий половину развернутого угла, называется прямым. Угол, меньший прямого, называется острым. Угол, больший прямого, но меньше развернутого, называется тупым.
Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными полупрямыми.
Треугольник – одна из простейших геометрических фигур. Треугольником называется геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех попарно соединяющих их отрезков. В любом треугольнике выделяют следующие элементы: стороны, углы, высоты, биссектрисы, медианы, средние линии.
Остроугольным называется треугольник, все углы которого острые. Прямоугольным – треугольник, который имеет прямой угол. Треугольник, который имеет тупой угол, называется тупоугольным. Треугольники называются равными, если у них соответствующие стороны и соответствующие углы равны. При этом соответствующие углы должны лежать против соответствующих сторон. Треугольник называется равнобедренным, если у него две стороны равны. Эти равные стороны называются боковыми, а третья сторона называется основанием треугольника.
Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков, причем никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырехугольника, а соединяющие их отрезки – сторонами.
Диагональю называется отрезок, соединяющий противоположные вершины многоугольника.
Прямоугольником называется четырехугольник, у которого все углы прямые.
Квадратом называется прямоугольник, у которого все стороны равны.
Многоугольником называется простая замкнутая ломаная, если ее соседние звенья не лежат на одной прямой. Вершины ломаной называются вершинами многоугольника, а ее звенья – его сторонами. Отрезки, соединяющие не соседние, называются диагоналями.
Окружностью называется фигура, которая состоит из всех точек плоскости, равноудаленных от данной точки, которая называется центром. Но поскольку в начальных классах не дается это классическое определение, знакомство с окружностью проводят методом показа, связывая его с непосредственной практической деятельностью по вычерчиванию окружности с помощью циркуля. Расстояние от точек до ее центра называется радиусом. Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр, называется диаметром.
Круг-часть плоскости, ограниченная окружностью.
Параллелепипед – призма, у которой основание – параллелограмм.
Куб – это прямоугольный параллелепипед, все ребра которого равны.
Пирамида – многогранник, у которого одна грань (ее называют основанием) – какой-нибудь многоугольник, а остальные грани (их называют боковыми) – треугольники с общей вершиной.
Цилиндр – геометрическое тело, образованное заключенными между двумя параллельными плоскостями отрезками всех параллельных прямых, пересекающих круг в одной из плоскостей, и перпендикулярных плоскостям оснований. Конус – тело, образованное всеми отрезками, соединяющими данную точку – его вершину – с точками некоторого круга – основание конуса.
Шар – множество точек пространства, находящихся от данной точки на расстоянии не большем некоторого данного положительного расстояния. Данная точка – это центр шара, а данное расстояние – радиус.
https://studfiles.net/preview/5707573/page:13/
Похожие темы
» Сакральная Геометрия
» Сакральная геометрия. Тор
» Звуковая, сакральная геометрия
» Роберт Лолор Сакральная геометрия
» Почему наука о Пространственных формах называется греческим словом Геометрия?
» Сакральная геометрия. Тор
» Звуковая, сакральная геометрия
» Роберт Лолор Сакральная геометрия
» Почему наука о Пространственных формах называется греческим словом Геометрия?
Страница 1 из 1
Права доступа к этому форуму:
Вы не можете отвечать на сообщения