ЖИЗНЬ и МироВоззрение
Вы хотите отреагировать на этот пост ? Создайте аккаунт всего в несколько кликов или войдите на форум.

Начала Евклида

Перейти вниз

Начала Евклида  Empty Начала Евклида

Сообщение  В.П.Николаев Пн Май 10, 2021 1:02 am

«Начала» (греч. Στοιχεῖα, лат. Elementa) — главный труд Евклида, написанный около 300 г. до н. э. и посвящённый систематическому построению геометрии. «Начала» — вершина античной геометрии и античной математики вообще, итог её 300-летнего развития и основа для последующих исследований. «Начала», наряду с двумя трудами Автолика из Питаны — древнейшее из дошедших до нас античных математических сочинений; все труды предшественников Евклида известны нам только по упоминаниям и цитатам позднейших комментаторов.
Прокл сообщает (ссылаясь на Евдема), что подобные сочинения создавались и до Евклида: «Начала» были написаны Гиппократом Хиосским, а также платониками Леонтом и Февдием. Но эти сочинения, по-видимому, были утрачены ещё в античности.
Текст «Начал» на протяжении веков были предметом дискуссий, к ним написаны многочисленные комментарии. Из античных комментариев до нас дошёл комментарий, написанный Проклом[1]. Этот текст является важнейшим источником по истории и методологии греческой математики. Прокл дает краткое изложение истории греческой математики (т. н. Евдемов каталог геометров), обсуждает взаимосвязь метода Евклида и логики Аристотеля, роль воображения в доказательствах.
Из древних комментаторов следует упомянуть Паппа, из новых — Пьера Рамуса[2], Федериго Коммандино[3], Христофа Шлюсселя (Клавиуса)[4] и Савилия.
 
В «Началах» излагаются планиметрия, стереометрия, арифметика, отношения по Евдоксу. В классической реконструкции Гейберга весь труд состоит из 13 книг. К ним традиционно присоединяют две книги о пяти правильных многогранниках, приписываемые Гипсиклу Александрийскому и школе Исидора Милетского.
Изложение в «Началах» ведётся строго дедуктивно. Каждая книга начинается с определений. В первой книге за определениями идут аксиомы и постулаты. Затем следуют предложения, которые делятся на задачи (в которых нужно что-то построить) и теоремы (в которых нужно что-то доказать). Определения, аксиомы, постулаты и предложения пронумерованы, например, I def. 2 — второе определение первой книги.

Первая книга


Первая книга начинается определениями, из которых первые семь (I def. 1-7) гласят:
1. Точка есть то, что не имеет частей. (Σημεῖόν ἐστιν, οὗ μέρος οὐθέν — букв. «Точка есть то, часть чего ничто»)
2. Линия — длина без ширины.
3. Края же линии — точки.
4. Прямая линия есть та, которая равно лежит на всех своих точках. (Εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφ' ἑαυτῆς σημείοις κεῖται)
5. Поверхность есть то, что имеет только длину и ширину.
6. Края же поверхности — линии.
7. Плоская поверхность есть та, которая равно лежит на всех своих линиях.
Комментаторы эпохи Возрождения предпочитали говорить, что точка есть место без протяжения. Современные авторы, напротив, признают невозможность определения основных понятий, и Давид Гильберт начинает «Основания геометрии»[6] так:
Мы мыслим три различные системы вещей: вещи первой системы мы называем точками и обозначаем Начала Евклида  C:\Users\C6AD~1\AppData\Local\Temp\msohtml1\01\clip_image002
Начала Евклида  C:\Users\C6AD~1\AppData\Local\Temp\msohtml1\01\clip_image004
Постулаты Евклида
За определениями Евклид приводит постулаты (I post. 1-5):
1. От всякой точки до всякой точки можно провести прямую.
2. Ограниченную прямую можно непрерывно продолжать по прямой.
3. Из всякого центра всяким раствором может быть описан круг.
4. Все прямые углы равны между собой.
5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.
Наиболее интересен в аксиоматике Евклида последний, знаменитый пятый постулат. Среди других, интуитивно очевидных постулатов, он нарочито чужероден, его громоздкая формулировка закономерно вызывает некоторое чувство протеста и желание отыскать для него доказательство. Такие доказательства уже в древности пытались построить Птолемей и Прокл; а в Новое время из этих попыток развилась неевклидова геометрия. Следует отметить, что первые 28 теорем I книги относятся к абсолютной геометрии, то есть не опираются на V постулат.
За постулатами следуют аксиомы (I ax. 1-9), которые имеют характер общих утверждений, относящихся в равной мере как к числам, так и к непрерывным величинам:
1. Равные одному и тому же равны и между собой.
2. И если к равным прибавляются равные, то и целые будут равны.
3. И если от равных отнимаются равные, то остатки будут равны.
4. (И если к неравным прибавляются равные, то целые будут не равны.)
5. (И удвоенные одного и того же равны между собой.)
6. (И половины одного и того же равны между собой.)
7. И совмещающиеся друг с другом равны между собой.
8. И целое больше части.
9. (И две прямые не содержат пространства.)
В скобки взяты аксиомы, принадлежность которых Евклиду Гейберг, автор классической реконструкции текста «Начал», счёл сомнительной. I post. 4 и 5 в ряде списков выступают как I ax. 10 и 11 соответственно.
За аксиомами следуют три теоремы, представляющие собой задачи на построение, давно вызывающие споры. Так I prop. 2 предлагает «от данной точки отложить прямую, равную данной прямой». Нетривиальность этой задачи состоит в том, что Евклид не переносит отрезок на прямую соответствующим раствором циркуля, полагая такую операцию недозволенной, и использует I post. 3 в неожиданно узком смысле.
При доказательстве I prop. 4, выражающего признак равенства треугольников, Евклид использует метод наложения, никак не описанный в постулатах и аксиомах. Все комментаторы отмечали эту лакуну, Гильберт не нашел ничего лучшего, как сделать признак равенства треугольников по трём сторонам (I prop. Cool аксиомой III-5 в своей системе. С другой стороны, постулат I post. 4 теперь принято доказывать, как это сделал впервые Хр. Вольф[7], у Гильберта это утверждение выводится из аксиом конгруэнтности[8].
Затем рассматриваются различные случаи равенства и неравенства треугольников; теоремы о параллельных прямых и параллелограммах; так называемые «местные» теоремы о равенстве площадей треугольников и параллелограммов на одном основании и под одной высотой. Заканчивается I книга теоремой Пифагора.

Обзор содержания книг II—XIII

II книга — теоремы так называемой «геометрической алгебры».
III книга — предложения об окружностях, их касательных и хордах, центральных и вписанных углах.
IV книга — предложения о вписанных и описанных многоугольниках, о построении правильных многоугольников.
V книга — общая теория отношений, разработанная Евдоксом Книдским.
VI книга — учение о подобии геометрических фигур. Эта книга завершает евклидову планиметрию.
VII, VIII и IX книги посвящены теоретической арифметике. Евклид в качестве чисел рассматривает исключительно натуральные числа; для него «Число есть совокупность единиц». Здесь излагаются теория делимости и пропорций, доказывается бесконечность множества простых чисел, приводится алгоритм Евклида для нахождения наибольшего общего делителя двух чисел, строятся чётные совершенные числа. Евклид доказывает также формулу для суммы геометрической прогрессии.
X книга — классификация несоизмеримых величин. Это самая объёмная из книг «Начал».
XI книга — начала стереометрии: теоремы о взаимном расположении прямых и плоскостей; теоремы о телесных углах, объём параллелепипеда и призмы, теоремы о равенстве и подобии параллелепипедов.
XII книга — теоремы о пирамидах и конусах, доказываемые с помощью метода исчерпывания. Здесь доказывается, например, теорема о том, что объём конуса составляет одну треть от объёма цилиндра с теми же основанием и высотой.
XIII книга — построение правильных многогранников; доказательство того, что существует ровно пять правильных многогранников.
Евклид нигде в книге не ссылается на других греческих математиков, хотя несомненно опирается на их результаты. Историки науки[9][10] показали, что прототипом для труда Евклида послужили более ранние сочинения античных математиков:
§    Книги I—IV и XI — «Начала» Гиппократа Хиосского.
§    Книги V—VI и XII — Евдокс Книдский.
§    Книги VII—IX — сочинения Архита Тарентского и других пифагорейцев. По мнению Ван дер Вардена, это самая древняя по содержанию часть «Начал», восходящая к V веку до н. э.
§    Книги X и XIII — Теэтет Афинский.
В целом содержание «Начал» покрывает значительную часть античной теоретической математики. Однако некоторая часть известного древнегреческим математикам материала осталась вне этого труда — например, конические сечения (Евклид посвятил им отдельный труд, который не сохранился), длина окружности, теория приближённых вычислений.
 
https://science.wikia.org/ru/wiki/Начала_Евклида
В.П.Николаев
В.П.Николаев
Пользователь

Сообщения : 341
Репутация : 284
Дата регистрации : 2016-03-19

Вернуться к началу Перейти вниз

Вернуться к началу

- Похожие темы

 
Права доступа к этому форуму:
Вы не можете отвечать на сообщения